EVIDENCE FOR BEHAVIORAL PREFERENCE TOWARD ENVIRONMENTAL CONCENTRATIONS OF URBAN-USE HERBICIDES IN A MODEL ADULT FISH

KEITH B. TIERNEY,* † MARK A. SEKELA, †† CHRISTINE E. COBBLER, §§ BESA XHABIA, †† MELISSA GLEDHILL, †† SIRINART ANANVORANICH, †† and BARBARA S. ZIELINSKI††

†University of Alberta, Department of Biological Sciences, Edmonton, Alberta, Canada
†Environmental Canada, Pacific and Yukon Water Quality Monitoring, Vancouver, British Columbia, Canada
§University of Windsor, Department of Biological Sciences, Windsor, Ontario, Canada
‖University of Windsor, Department of Biochemistry, Windsor, Ontario, Canada

(Submitted 24 January 2011; Returned for Revision 16 March 2011; Accepted 3 May 2011)

Abstract—Fish live in waters of contaminant flux. In three urban, fish-bearing waterways of British Columbia, Canada, we found the active ingredients of WeedEx®, KillEx®, and Roundup® herbicide formulations (2,4-D, dicamba, glyphosate, and mecoprop) at low to high ng/L concentrations (0.26 to 309 ng/L) in routine conditions, i.e., no rain for at least one week. Following rain, these concentrations increased by an average of eightfold, suggesting runoff as a major route of herbicide introduction in these waterways. To determine whether fish might be able to limit point-source exposures through sensory-driven behaviors, we introduced pulses of representative herbicide mixtures to individual adult zebrafish (a model species) in flow-through tanks. Fish did the opposite of limit exposure; they chose to spend more time in pulses of herbicide mixtures representative of those that may occur with rain events. This attraction response was not altered by a previous 4-d exposure to lower concentrations of the mixtures, suggesting fish will not learn from previous exposures. However, previous exposures did alter an attraction response to an amino acid prevalent in food (L-alanine). The present study demonstrates that fish living within urban waterways may elect to place themselves in herbicide-contaminated environments and that these exposures may alter their behavioral responses to cues necessary for survival.

Keywords—Zebrafish, Herbicide avoidance, Behavioral attraction

INTRODUCTION

Fishes everywhere live in contaminated water. Even in remote regions free of human activity, water can contain contaminants such as pesticides [1]. In regions with human activity, water may contain complex contaminant mixtures [2]. A recent study of a British Columbia river that passes through a rural area found a complex mixture consisting of at least 40 contaminants, including herbicides and insecticides of agricultural origin [3]. Determining whether contaminant mixtures constitute a risk to fishes and other biota is a challenging task; contaminant concentrations vary in time and space, and some contaminant exposures may cause only subtle alterations [4].

Concentrations of toxic contaminants in the environment are typically far below those that cause death, which indicates most exposures may cause sublethal effects [5,6]. These effects may increase the probability of ecological death, or death by normal ecological processes such as predation, starvation, disease, or myriad other causes [7,8]. Several studies of fishes have determined that numerous pesticides may do just that, by altering locomotory activity [9,10] or by impairing the ability to detect predator scent [11–14]. The complex contaminant mixtures found in aquatic environments may simultaneously cause a diverse array of sublethal effects in fishes; a goal should be to relate such effects to endpoints relevant to survival.

The present study aimed to help determine whether fish can avoid realistic herbicide exposures, and if not, whether the exposures can affect behavior. To accomplish this, representative environmental herbicide concentrations were needed. These were determined by measuring herbicide concentrations in four fish-bearing creeks located within urban settings. In one case, this necessitated developing a new analytical protocol. Based on the herbicide concentrations found in the creeks, mixtures that reflected concentrations lower than, typical of, and greater than the observed average were prepared. We then measured the abilities of fish to avoid or be attracted to these mixtures. We also measured how exposure to the mixtures affected their ability to respond to an amino acid food odor (L-alanine) [15] that evokes attraction [16]. In these experiments, zebrafish (Danio rerio) were used since this species is an emerging model for behavioral toxicity testing [17,18].

MATERIALS AND METHODS

Fish

Zebrafish of both sexes (n = 120, mass 0.47 ± 0.02 g, length 3.89 ± 0.05 cm, condition factor 0.76 ± 0.02) were obtained from a local supplier (Pro-Fish, Canada) and held at 28°C in filtered dechlorinated municipal tap water, dissolved oxygen >90%, under a 12:12-h day:night cycle for at least two weeks prior to experimentation and fed flakes once daily (Wardley Essentials), except 24 h prior to experiments. Experiments were conducted in accordance with the University of Windsor Animal Care Guidelines.

Chemicals

All chemicals were purchased from Sigma-Aldrich except for MS222 (tricaine methanesulfonate 99.5%; Argent Laboratories).
Each site was sampled at least six times, and water was analyzed for the presence of herbicides commonly used in urban areas for control of weeds (see Table 2). Nonresidential sample site type Impacted Reference Impacted Impacted Longitude -122.85497 -123.05982 -122.79776 -122.96922 Latitude 49.23666 49.34547 49.26768 49.25921 Sample detection limits are given in analysis purposes all needed to be converted to acids and are arriving to established methods [20]. Acid extractable herbicides capped bottles were shaken vigorously to extract and stabilize samples were spiked with surrogate standards, derivatized with 9-fluorenylmethylchloroformate in borate buffer, acidified to pH 1.5 to 2.5, and extracted on solid-phase extraction (SPE) cartridges (200 mg HLB; Waters). The SPE cartridges were washed with acidified water/methyl tertiary-butyl ether and eluted with basic methanol. Extracts were reduced in volume, spiked with recovery standard, and analyzed using a mass spectrometer (Micromass Quattro Ultima tandem quadrupole) coupled to high-performance liquid chromatography (Waters 2795 Alliance) equipped with a C18 column (SunFire 3.5 mm, 4.6 x 30 mm; Waters). The electrospray ionization source was operated in positive ion mode and mass resolution in the multiple reaction monitoring mode. Glyphosate samples were analyzed within two weeks to avoid the microbial degradation that may occur [19]. For the acid extractable herbicides (AEHs) (dicamba, mecoprop, and 2,4-D), 1 L of water was collected as above in amber glass bottles and 2 ml of concentrated H2SO4 was added. The capped bottles were shaken vigorously to extract and stabilize the herbicides. Quantification of AEHs was carried out according to established methods [20]. Acid extractable herbicides exist as acids, esters, and salts in the environment, but for analysis purposes all needed to be converted to acids and are reported here as such. Sample detection limits are given in Table 2.

Fish exposures and behavior assessment

Three scenarios were used in the present study, each intended to simulate a different type of realistic situation. Two scenarios were used to determine if fish would avoid introduced herbicide mixture plumes, i.e., those mixtures entering a waterway through a point source following a simulated rain event (SRE). The first of these was aimed at determining whether unexposed, naïve fish (those raised in filtered, dechlorinated municipal water) would avoid various mixture concentrations; the second was intended to determine if fish exposed to herbicide mixtures would avoid mixtures at concentrations greater than those of their exposure. A final, third set of experiments was conducted on exposed fish to determine whether exposure affected a behavioral response to L-alanine. To create environmentally realistic herbicide mixtures in laboratory, a consensus mixture was constructed from the average herbicide concentrations of the three impacted creeks (Table 2). The mixture was designed to consist of glyphosate (100 ng/L), dicamba (2.5 ng/L), mecoprop (15 ng/L), and 2,4-D (25 ng/L). The herbicide concentrations were all far below those that would result in lethality (e.g., 96-h median lethal concentration [LC50] values: glyphosate, 620 mg/L, carp [21]; dicamba, 180 mg/L, sheepshead minnow [Cyprinodon variegates] [22]; mecoprop, 92 mg/L, bluegill sunfish [Pomis macrochirus] [22]; and 2,4-D, 5.1 mg/L, carp [Cyprinus carpio] [23]). Immediately before each of the three experiments, 1-L stock solutions of 1,000-fold greater concentration of the consensus mixture were prepared in distilled water. For exposures, dilutions of this were then prepared using tank water. To estimate actual exposure concentrations for the press exposures, water samples were taken randomly from each exposure group (i.e., control, low, medium, and high) once during the experiments and analyzed as above.

Behavioral responses of individual fish were determined in an array of five, 500-ml circular flow-through tanks (10 cm Ø, 6 cm water depth), each with their own fluid delivery system and overhead closed circuit digital video camera (Matco). The fluid delivery system consisted of a multichannel peristaltic pump (Masterflex) and polytetrafluoroethylene (PTFE) tubing (0.318 cm OD, 0.159 cm ID; Clean Air Engineering) that replaced 1% of the tank volume in 2 min (i.e., flow rate was 2.5 ml/min; calibrated before each test). Video from all 90-min trials was recorded by a computer running surveillance software (EverSecure; Matco). Fish position in the horizontal plane was determined every 30th of a second using EthoVision XT 5.1 (Noldus). Fish swimming speed was also determined throughout the trials. To determine whether the herbicide mixtures and L-alanine evoked attraction, the amount of time fish spent in an area around the inflow was determined. This area was demarcated by an arc centered about the inflow with a radius equal to one half of the tank radius, an area of 10.6% of the total tank area (Fig. 1). Preliminary trials indicated that this area would permit capturing fish activity when their head was either pointed downstream of of the water flow. To create environmentally realistic herbicide mixtures in laboratory, a consensus mixture was constructed from the average herbicide concentrations of the three impacted creeks (Table 2).
directly placed on or within approximately 5 mm of the inflow. Dye tests indicated that compounds introduced into the tank inflow would form a plume of high odor concentration that would have largely left the inflow area within 5 min of introduction (Fig. 2). For this reason, we consider attraction responses to be evident as any increase in time spent in this area during the 5 min following introduction as compared to the previous 5 min. Average swimming speed following herbicide mixtures and L-alanine introduction was used as a metric of activity.

Simulated rain event responses

To determine behavioral responses of unexposed fish to herbicide pulses, individual fish were placed in the tanks, left to acclimate for 30 min, after which the inflow was switched to either vehicle (tank water) or herbicide mixtures at medium and tenfold lower or higher concentrations for a period of 2 min (values in Table 2). This means the average dilution factor in the tank was 100-fold (5 ml into 500 ml). In the present article we report concentrations that reflect this approximate final dilution concentration, not the delivery concentration. Following 2 min of delivery, the inflow was returned to tank water. At 60 min following the initial inflow change, fish were removed and sacrificed using over-anesthesia (0.5 mg/L of MS222 buffered 1:1 with NaHCO3) (total time in the behavior tanks: 90 min). Two replicates of five fish (one per tank) were tested at each mixture concentration (control, low, medium, high; n = 40).

To determine if fish previously exposed to herbicide mixtures were capable of limiting further exposure by avoiding water with a higher herbicide concentration, fish were given four-day (96 h) exposures to the same mixtures as above (Table 2), placed in the behavior tanks, left to acclimate for 30 min, then given an inflow of herbicide mixture twofold greater than the highest exposure concentration for 2 min (n = 40). Fish were removed and sacrificed after 90 min as above. The 96-h exposures were carried out in 10-L glass tanks using a 24-h static and renewal regimen with five fish (one replicate) per tank.

Food odor responses

To determine whether herbicide exposure altered attraction to food odor, fish were given 96-h exposures as above, then placed in the behavior tanks to test their attraction to L-alanine. A decrease in attraction to L-alanine suggests impaired food
searching ability. The 2-min pulses were carried out as above, only in place of water/herbicide pulses a pulse of L-alanine (10^{-7} M) was used. As above, fish were sacrificed after 90 min and two replicates were tested at each concentration (n = 40).

Statistics

To detect behavioral responses in each of the three experiments, the amount of time (s) fish spent in the inflow area in each of the 5-min after odor/mixture introduction was compared.
to the average time spent in the inflow area during the 5-min prerelase period. In order to compare responses across fish and treatments, the post-odor/mixture times were ordered by their magnitude. This was necessary as fish do not necessarily respond immediately to an introduced odor (i.e., their smallest response may have occurred in the first minute; their largest in the last). By ordering the responses the comparison isolates the size of the responses, and not their timing. Ordering also helps eliminate the influence of fish position in the tank at the time of odor/mixture delivery on the timing of a behavioral response. After ordering, fish were compared across treatments using a two-way (pre- versus postdelivery; min), repeated measures analysis of variance (ANOVA), followed by a Tukey honestly significant difference multiple comparisons test. Behavioral attraction was considered to occur if the number of minutes in which exposed fish spent more time in the inflow increased (versus control); avoidance, the opposite. For clarity of presentation, boxplots of the difference between pre- and postdelivery are shown. Differences in postdelivery swimming speed across the treatment groups were compared using ANOVA followed by a Holm-Sidak multiple comparisons test against control. The limit of significance for all tests was set at \(p < 0.05 \). SigmaPlot 11 (Systat) was used for graphing and statistics.

RESULTS

Herbicide concentrations in field and laboratory

Over the five months spanning the seven sampling events, only mecoprop and 2,4-D were detectable in the reference creek (Hastings), and then on one day only (May 14, 2007), and at very low concentrations (0.795 and 0.557 ng/L, respectively). In contrast, all four herbicides were detectable in the impacted creeks (Como, Scott, and Still) (Table 2). Dicamba concentrations were, on average, the lowest, ranging from 0.105 to 22.5 ng/L. Mecoprop and 2,4-D were typically similar in concentrations, ranging from 1.10 to 187 and 2.04 to 309 ng/L, respectively. Glyphosate concentrations were the greatest, ranging from 22.8 to 455 ng/L. Rain increased all herbicide concentrations the overwhelming majority (86.7%) of the time (Fig. 3). For example, in Como Creek, following a rain event in July, herbicide concentrations increased by 7.8, 12, 16, and 23-fold for glyphosate, mecoprop, 2,4-D, and dicamba, respectively (Fig. 3). On average, rain increased herbicide concentrations by 8.0-fold.

In laboratory exposures, concentrations were quantifiable for all herbicides except for control and low glyphosate concentrations and the control 2,4-D concentration (Table 2). This was likely due to comparatively high sample detection limits (SDLs) for these two herbicides (19.9 ± 0.3 and 0.53 ± 0.03 ng/L, respectively), compared to 0.05 ± 0.00 and 0.13 ± 0.03 ng/L for dicamba and mecoprop. In the control (tank) water of the laboratory, trace concentrations of dicamba and mecoprop were detected. However, these concentrations (0.117 and 0.114 ng/L) were far lower than the averages of the impacted creeks (2 and 0.38%). The prepared mixture exposure concentrations captured the range of values observed in field. For example, the high concentrations were within 3.6% (on average) of the high concentrations observed in field. The average (medium) and low concentrations typically fell within the bulk of field observations. The measured values did vary from the intended (nominal) values. Specifically, nominal concentrations for the medium exposures intended to be 100, 2.5, 15, 25 ng/L of glyphosate, dicamba, mecoprop, and 2,4-D, respectively, were measured at 65.9, 6.10, 5.03, and 48.4. However, the total exposure (135 ng/L of herbicides) was close to the intended (142 ng/L). The total high concentration exposure was lower than intended (875 vs. 1425 ng/L), while the low total concentration was greater (by 32.9 ng/L).

Behavioral responses

Responses to simulated rain events. The introduction of water did not evoke attraction in control fish (Figs. 4A, 5A). In fact, controls spent a greater proportion of 2 min away from the inflow area \((p < 0.001) \). This general pattern did not change with 2-min pulses of low and medium concentrations of herbicides (Fig. 5B,C), but was altered by a high concentration pulse (Figs. 4A, 5D). Specifically, fish spent 8.79 s more in the inflow area during 1 min of the 5 min following herbicide introduction \((p < 0.001) \), suggesting that the herbicide mixture caused an attraction response. Swimming speed was also affected by exposure \((F_{3,38} = 5.159) \), with the high concentration pulse increasing speed 2.00 cm/s above control \((p < 0.001) \) (Fig. 6A).

Previous herbicide exposure did not alter an attraction response to a higher mixture concentration (Figs. 4B, 5E–H). Specifically, whether fish were exposed to low or high mixture concentrations the attraction to a very high concentration pulse remained \((p \text{ values for Control, Low, Medium, and High: } 0.037, 0.044, 0.007, \text{ and } 0.012, \text{ respectively}) \). With swimming speed, in contrast to unexposed fish, mixture exposure tended to reduce the speeds \((F_{3,38} = 3.289) \), with fish given a low concentration exposure swimming 1.97 cm/s slower than control \((p = 0.004) \) (Fig. 6B).
Responses to food odor following mixture exposure. In the 5 min following L-alanine presentation, searching behavior of control fish was characterized by 1 min in which fish spent significantly more time in the inflow area, and 1 min in which they spent less time (Fig. 5I). In contrast, fish exposed to herbicides spent significantly more time in the inflow area over 3 to 4 min, and did not have a minute in which they spent less time (Figs. 4C, 5J–L) (\(P\) values for Control: 0.007 [min 1], 0.138 [min 2], 0.393 [min 3], 0.057 [min 4], 0.001 [min 5]; Low: 0.001 [min 1], 0.001 [min 2], 0.016 [min 3], 0.154 [min 4], 0.55 [min 5]; Medium: 0.001 [min 1], 0.003 [min 2], 0.008 [min 3], 0.04 [min 4], 0.976 [min 5]; High: 0.001 [min 1], 0.018 [min 2], 0.039 [min 3], 0.61 [min 4], 0.119 [min 5]). Swimming speed was significantly altered with L-alanine exposure (\(F_{3,35} = 3.269\)), but post-hoc analysis did not identify any groups differing from control (Fig. 6C). However, the mean difference between control and low was greatest (1.67 cm/s) and approached significance (\(p = 0.055\)).

DISCUSSION

Behavioral responses of organisms are intended to place them in conditions that favor their survival. Improving access to resources, such as food, while avoiding injurious situations, contaminant exposure, helps achieve this. In the present study, fish chose to move into a plume of herbicide contaminants representative of those found in example urban aquatic environments. The implication for this unexpected decision is that fish with the ability to select between environments differing in contamination, such as upstream pristine conditions and downstream impacted conditions, may choose to reside in contaminated, potentially harmful areas.

Herbicides in field and laboratory

Not all of the globally used pesticides reach only their targets. In the United States, pesticides were detected in 97% of urban and agricultural waterways [24]. Typically, concentrations were in the ng/L range, although they spiked well into the \(\mu\)g/L range following rain events. In the present study of four creeks within a Canadian urban setting, the active ingredients from Weedex, Killex (2,4-D, dicamba, and mecoprop), and Roundup (glyphosate) were found in mixtures, with some concentrations up to 455 ng/L (glyphosate). The herbicides can be attributed to human activity directly adjacent to the creeks since herbicides were largely absent in the reference creek. In the impacted creeks, herbicide concentrations were consistent, except following rain events. After rain, herbicide concentrations increased on average by a factor of 8. Given that the rainfall in this region is considerable (yearly average of 1.3 m; www.climate.weatheroffice.ec.gc.ca), runoff clearly plays a substantial role in the unintentional deposition of herbicides in urban aquatic ecosystems.

Behavioral responses to and following herbicide exposure

It is generally accepted that as contaminant concentrations become toxic, fish will move to less contaminated areas [25]. For this to be true, contaminants need to be perceived as noxious, which is not always the case; fish can be attracted to some herbicides, including dalapon [26], nicosulfuron, and...
In the present study, fish exhibited attraction to a mixture containing four herbicides, none of which have been previously associated with attraction. In fact, two of the herbicides, 2,4-D and glyphosate in its Roundup formulation, evoked avoidance (2,4-D: [27,28]; Roundup [14]). However, the avoided concentrations in these studies were typically 1,000-fold greater than the total mixture concentration tested here (e.g., 1 μg/L vs. 1 mg/L). The mixture attraction response of the present study may have been related to concentration, as studies have found that attraction can switch to avoidance with increasing concentration. For example, rainbow trout were attracted to 6 μg/L of NiCl₂ but avoided 24 μg/L [29]. Alternately, the combination of the four herbicides, two of which are known to evoke olfactory sensory neuron responses (2,4-D and glyphosate; [13]), may have created an interesting odor bouquet. Whether the attraction was a concentration and/or
mixture effect, fish chose to expose themselves to herbicide mixtures.

Sublethal contaminant exposures may have associated energetic costs. To provide a proxy for energy acquisition, studies have included behavioral endpoints to food odors. For example, responses to food extract by goldfish were reduced by 12-h exposure to 100 mg/L carbofuran [30] and 24-h exposure to 330 mg/L parathion [31]. In the present study, zebrafish exposed to herbicide mixtures similar to those in the environment (i.e., in low concentration and through surrounding water) spent a greater amount of time in a plume of an amino acid (L-alanine) food odorant. Olfactory studies have typically found short duration herbicide exposures impair olfactory sensory neuron responses to amino acids [5,32]. However, these studies generally used concentrations greater than in the present study and were of short duration, which limits physiological adaptation of the olfactory tissues. The concentrations in the present study may have been too low to impair olfactory responses, or perhaps the fish had time to adapt. In either case, fish may have experienced systemic effects that increased their willingness to search for a perceived food. Herbicide exposure may have cost energy in terms of biotransformation and excretion, and so these fish may have been hungrier, although this remains for future study.

Fish activity level may also have energetic ramifications and can be affected by synthetic contaminant exposure. Some clear examples are agents that alter motor neuron functionality, such as acetylcholinesterase (AChE)-impairing insecticides. These

Fig. 6. Average swimming speeds of zebrafish over 60 min following the introduction of tank water (control) or simulated rain events (i.e., herbicide mixture pulses), both without previous mixture exposure (A) and with previous (96 h) exposure (B), as well as following the introduction of a food odorant (10⁻⁷ M L-alanine) (C). Fish in (A) were naïve fish (held in filtered water prior to behavioral testing), whereas fish in (B,C) received 96-h exposures to various herbicide mixture concentrations (for exposure concentrations see Table 2; all controls received tank water). Asterisk indicates significant difference versus control.
agents can evoke hyperactivity with low levels of AChE impairment [9] and hypoactivity as impairment increases [33]. Other agents that do not have mechanisms of action that so directly relate to swimming activity have been observed to alter swimming. The herbicides atrazine and Roundup, for example, evoke hyperactivity and hypoactivity, respectively, in rainbow trout [14]. In the present study the activity of unexposed fish was increased in the 60 min following exposure to a mixture of herbicides, at a concentration below those of the above study (i.e., ng/L vs. ≥μg/L) (Fig. 6A). This response was reversed in at least one group of fish that had been given a previous (96 h) exposure to the mixture (Fig. 6B). While we will not speculate on the mechanisms by which these changes in fish activity occurred, it is worth noting that should any such alterations occur with fish in environmental situations, predator/prey dynamics could be affected. Both hyper- and hypoactivity may make fish more conspicuous.

CONCLUSION

Behavioral alterations such as found in the present study generally occur with exposures one to two orders of magnitude lower than those that cause lethality [22]. We noted a change in food odor attraction with herbicide exposures at approximately 1 μg/L; lethality values for all of the herbicides in the mixture are in the mg/L range. The data of this study suggest that significant behavioral changes can occur at greater than three orders of magnitude below lethality. We also noted that environmentally relevant concentrations of herbicide mixtures may attract fish. A goal for future studies should be to explore how the individual constituents of the mixture contribute to attraction, perhaps by herbicide class. An important second goal for future studies would be to determine how these subtle behavioral changes, both to food odor and synthetic contaminants, affect organism fitness.

Acknowledgement—We thank Zena Alyashae, Michael Holmes, and Urszula Liwak for assistance with exposures and data analysis. Supported by Natural Sciences and Engineering Research Council of Canada grants to K.B.T., S.A., and B.S.Z.

REFERENCES

Your article will be published online via Wiley's EarlyView® service (www.interscience.wiley.com) shortly after receipt of corrections. EarlyView® is Wiley's online publication of individual articles in full text HTML and/or pdf format before release of the compiled print issue of the journal. Articles posted online in EarlyView® are peer-reviewed, copyedited, author corrected, and fully citable via the article DOI (for further information, visit www.doi.org). EarlyView® means you benefit from the best of two worlds--fast online availability as well as traditional, issue-based archiving.

Please follow these instructions to avoid delay of publication.

☐ READ PROOFS CAREFULLY
- This will be your only chance to review these proofs. Please note that once your corrected article is posted online, it is considered legally published, and cannot be removed from the Web site for further corrections.
- Please note that the volume and page numbers shown on the proofs are for position only.

☐ ANSWER ALL QUERIES ON PROOFS (Queries for you to answer are attached as the last page of your proof.)
- Mark all corrections directly on the proofs. Note that excessive author alterations may ultimately result in delay of publication and extra costs may be charged to you.

☐ CHECK FIGURES AND TABLES CAREFULLY
- Check size, numbering, and orientation of figures.
- All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article.
- Review figure legends to ensure that they are complete.
- Check all tables. Review layout, title, and footnotes.

RETURN ☐ PROOFS
☐ PAGE CHARGE FORM
☐ CTA (If you have not already signed one)

RETURN IMMEDIATELY AS YOUR ARTICLE WILL BE POSTED ONLINE SHORTLY AFTER RECEIPT

QUESTIONS? Production Editor
E-mail: etcprod@wiley.com

Refer to journal acronym and article production number (i.e., ETC 00-001 for ETC ms 00-001).
SOCIETY OF ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY – COPYRIGHT TRANSFER AGREEMENT

Please sign and return immediately to the Editorial Office

Environmental Toxicology and Chemistry

C. H. Ward, Editor-in-Chief

Civil and Environmental Engineering, Rice University, MS 316, 6100 Main Street, Houston TX 77005 USA

Email: etcj@rice.edu • Fax: +001 713 348 5948

Manuscript No.: __________________________ Issue (Editorial Office only): __________________________

Corresponding Author (“Contributor”): __

Co-Contributors: __

Manuscript Title (“Contribution”): __

for publication in Environmental Toxicology and Chemistry (the “Journal”) published by Wiley-Blackwell or any successor publisher (“Wiley-Blackwell”) on behalf of the Society of Environmental Toxicology and Chemistry (“the Society”).

If the Contribution is not accepted for publication, or if the Contribution is subsequently rejected, this Agreement shall be null and void. Publication cannot proceed without a signed copy of this Agreement.

A. Copyright Assignment The Contributor assigns to the Society, during the full term of copyright and any extensions or renewals, all copyright in and to the Contribution, and all rights therein, including but not limited to the right to publish, republish, transmit, sell, distribute, and otherwise use the Contribution in whole or in part in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

B. Citation and Credit Reproduction, posting, transmission, or other distribution or use of the final Contribution in whole or in part in any medium by the Contributor as permitted by this Agreement requires a citation to the Journal and an appropriate credit to the Society and Wiley-Blackwell as Publisher, suitable in form and content as follows: [Title of Article], [Contributor], Environmental Toxicology and Chemistry [Volume/Issue], Copyright © [year] Society of Environmental Toxicology and Chemistry, Wiley-Blackwell Publisher. Links to the final article on Wiley-Blackwell’s website are encouraged where appropriate.

C. Retained Rights by Contributor or Contributor Employer Notwithstanding the above, the Contributor or, if applicable, the Contributor’s Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure, or article of manufacture described in the Contribution.

D. Permitted Uses of Contribution by Contributor

1. Submitted Version. The Society licenses back the following rights to the Contributor in the version of the Contribution as originally submitted for publication:
 a. After the final version is published, the right to self-archive on the Contributor’s personal website or in the Contributor’s employer’s institutional repository or archive on both intranets and the Internet. The Contributor may not update the submitted version or replace it with the published Contribution. The version posted must contain a legend as follows: This is the pre-peer-reviewed version of the following article: FULL CITE, which has been published in final form at [Link to final article].
 b. The right to transmit, print, and share copies with colleagues.

2. Accepted Version. Re-use of the accepted and peer-reviewed (but not final) version of the Contribution shall be by separate agreement with Wiley-Blackwell. Requests for permission should be addressed to the permissions department at journalsrights@wiley.com. Wiley-Blackwell has agreements with certain funding agencies governing re-use of the accepted version. For details of those agreements, and other offerings allowing open web use, see http://www.wiley.com/go/funderstatement. NOTE: NIH grantees should check the box at the end of this document. Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by NIH grant-holders to PubMed Central upon acceptance. The accepted version will be made publicly available 12 months after publication. For more information, see www.wiley.com/go/nihmandate.

3. Final Published Version. The Society hereby licenses back to the Contributor the following rights with respect to
the final published version of the Contribution:

a. Copies for colleagues. The personal right of the Contributor only to send or transmit individual copies of the final published version in any format to colleagues upon their specific request provided that no fee is charged, and further provided that there is no systematic distribution of the Contribution, e.g., posting on a listserv, website, or automated delivery.

b. Re-use in other publications. The right to re-use the final Contribution or parts thereof for any publication authored or edited by the Contributor (excluding journal articles) where such re-used material constitutes less than half of the total material in such publication. In such case, any modifications should be accurately noted.

c. Teaching duties. The right to include the Contribution in teaching or training duties at the Contributor’s institution or place of employment including in course packs, e-reserves, presentation at professional conferences, in-house training, or distance learning. The Contribution may not be used in seminars outside of normal teaching obligations (e.g., commercial seminars). Electronic posting of the final published version in connection with teaching or training at the Contributor’s institution or place of employment is permitted subject to the implementation of reasonable access control mechanisms, such as user name and password. Posting the final published version on the open Internet is not permitted.

d. Oral presentations. The right to make oral presentations based on the Contribution.

4. Article Abstracts, Figures, Tables, Data Sets, Artwork, and Selected Text (up to 250 words).

a. Contributors may re-use unmodified abstracts for any non-commercial purpose. For on-line uses of the abstracts, the Society encourages but does not require linking back to the final published versions.

b. Contributors may re-use figures, tables, data sets, artwork, and selected text up to 250 words from their Contributions, provided the following conditions are met:
 i. Full and accurate credit must be given to the Contribution.
 ii. Modifications to figures, tables, and data must be noted. Otherwise, no changes may be made.
 iii. Re-use may not be made for direct commercial purposes, or for financial consideration to the Contributor.
 iv. Nothing herein shall permit dual publication in violation of journal ethical practices.

E. Contributions Owned by Employer

1. If the Contribution was written by the Contributor in the course of the Contributor’s employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company or employer, which must sign this Agreement (in addition to the Contributor’s signature). In such case, the company or employer hereby assigns to the Society, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, the Society hereby grants back, without charge, to such company or employer, its subsidiaries and divisions, the right to make copies of and distribute the final published Contribution internally in print format or electronically on the Company's intranet. Copies so used may not be resold or distributed externally. However, the company or employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. Posting of the final published Contribution by the company or employer on a public-access website may be done only with Wiley-Blackwell's written permission and payment of any applicable fees. Also, upon payment of Wiley-Blackwell's reprint fee, the institution may distribute print copies of the published Contribution externally.

F. Government Contracts. In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires.

G. Government Employees

1. U.S. Government Employees: A contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication, is called a "U.S. Government work," and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign (in the Contributor’s signature line) and return this Agreement. If the Contribution was not
preparing as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

2. U.K. Government Employees: The rights in a Contribution prepared by an employee of a U.K. government department, agency, or other Crown body as part of his or her official duties, or which is an official government publication, belong to the Crown. U.K. government authors should submit a signed declaration form together with this Agreement. The form can be obtained via http://www.opsi.gov.uk/advice/crown-copyright/copyright-guidance/publication-of-articles-written-by-ministers-and-civil-servants.htm

3. Non-U.S., Non-U.K. Government Employees: If your status as a government employee legally prevents you from signing this Agreement, please contact the Editorial Office.

H. Copyright Notice The Contributor and the company or employer agree that any and all copies of the final published version of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley-Blackwell.

I. Contributor's Representations The Contributor represents that the Contribution is the Contributor's original work, all individuals identified as Contributors actually contributed to the Contribution, and all individuals who contributed are included. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley-Blackwell's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe upon the rights (including without limitation the copyright, patent, or trademark rights) or the privacy of others, or contain material or instructions that might cause harm or injury.

J. Signature All Contributors must sign below and check the box or boxes that apply. If your Contribution was written during the course of employment, your employer must also sign where indicated. NOTE: NIH grantees must also check the NIH grantees box.

[____] Contributor-owned work
[____] Contributing author authorized to sign for all

Contributor's signature
Date

[____] U.S. Government work
[____] U.K. Government work (Crown Copyright)
[____] Other Government work

Type or print contributing author name and title

[____] NIH Grantee

Co-contributor's signature
Date

Type or print co-contributor's name and title

[____] Company- or Institution-owned work
(made-for-hire in course of employment)

Company or Institution (Employer-for-Hire)
Date

Authorized signature of Employer
Date
Environmental Toxicology and Chemistry

Page Charge Form

PLEASE RETURN WITH YOUR PAGE PROOFS TO: John Wiley & Sons, 111 River Street, Hoboken, NJ 07030.
ATTENTION: Jeffrey Collins (etcprod@wiley.com). Telephone: (201) 748-8864

Article Number: Authors:

Please calculate your page charge based on the information in the table below.

<table>
<thead>
<tr>
<th>Select one</th>
<th>Author Category</th>
<th>Pages 1-6</th>
<th>Pages 7-12</th>
<th>Pages 13 and beyond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Review Author</td>
<td>FREE</td>
<td>$50 per page</td>
<td>$150 per page</td>
<td></td>
</tr>
<tr>
<td>SETAC member in good standing</td>
<td>FREE</td>
<td>$50 per page</td>
<td>$150 per page</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>$50 per page</td>
<td>$150 per page</td>
<td>$150 per page</td>
<td></td>
</tr>
</tbody>
</table>

SETAC member in good standing: Membership is current at the time of submission and has been continuous for 2 years prior to submission
Other: Non-member, or membership is not current at the time of submission or has not been continuous for 2 years prior to submission

Total article length ____________ pages

Cost for pages 1-6 ____________

Additional cost for pages 7-12 ____________

Additional cost for pages 13 and beyond ____________

TOTAL page charges ____________

Form of payment (in US$ drawn from a US Bank; payable to Wiley-Blackwell):
 • Visa • MasterCard • Check • Purchase Order No. ____________

Card # ____________ Expiration Date ____________
Signed ____________ Date ____________

Institution ____________
Name ____________
Address ____________

BILL TO (if your payment does not accompany this form):
Name: ____________ Institution ____________
Address: ____________
Additional reprint and journal issue purchases

Should you wish to purchase additional copies of your article, please click on the link and follow the instructions provided: https://caesar.sheridan.com/reprints/redir.php?pub=10089&acro=ETC

Corresponding authors are invited to inform their co-authors of the reprint options available.

Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permissionsus@wiley.com

For information about ‘Pay-Per-View and Article Select’ click on the following link: http://wileyonlinelibrary.com/ppv